The structure of the title compound was solved by direct methods and refined by full-matrix least-squares calculations using *CRYSTAN-GM* (Gilmore & Brown, 1988). H atoms attached to *tert*-butanol O atoms were found from the difference Fourier map and fixed in the refinement. Other H atoms were placed at geometrically idealized positions with N—H and C—H distances of 0.96 Å, and were restricted to their parent atoms with the corresponding equivalent isotropic displacement parameters. The absolute configuration was assigned to agree with the known chirality at the C(6) and C(27) atoms arising from L-tryptophan methyl ester.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry, including contact distances, have been deposited with the IUCr (Reference: TA1063). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Gilmore, C. J. & Brown, S. R. (1988). Acta Cryst. A44, 1018-1021.
- Irikawa, H., Enomoto, M., Shimoda, Y., Atsumi, T., Okumura, Y. & Iijima, K. (1994). Bull. Chem. Soc. Jpn, 67, 1931–1935.
- Iwadera, S., Shizuri, Y., Sasaki, K. & Hirata, Y. (1974). *Tetrahedron*, **30**, 4105–4111.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Miehe, G., Süsse, P., Kupcik, V., Egert, E., Nieger, M., Kunz, G., Gerke, R., Knieriem, B., Niemeyer, M. & Lüttke, W. (1991). Angew. Chem. Int. Ed. Engl. 30, 964–967.

The title compound (I) was synthesized by the treatment of methyl *N*-cyanomethylbenzimidate with lithium diisopropylamine at 203 K followed by the action of cyclohexylisothiocyanate (Kammoun, Hajjem & Baccar, 1996). Theoretically, the reaction could lead to the formation of imidazole or to thiazole derivatives. Singlecrystal X-ray diffraction allowed the determination of the molecular structure. The thiazole ring is planar,

as shown by the torsion angles C7—S—C9—C8 = 1.4 (2) and C9—S—C7—N1 = -1.2 (2)°. The C—S bond lengths in the thiazole ring [C9—S 1.729 (2) Å, C7—S 1.761 (2) Å] are similar to the C—S bond distances in the thiophene ring (Allen *et al.*, 1987) indicating a partial π -bond character. This results from the delocalization of the negative density charge through the thiazole ring. The phenyl-ring plane is twisted about 7.9 (2)° out of the thiazole ring. The low value of this twist angle and the short C1—C7 distance [1.468 (3) Å] could explain the conjugation between the two rings.

Acta Cryst. (1996). C52, 1006-1007

5-Cyclohexylamino-2-phenyl-4-thiazolecarbonitrile

MADIHA KAMMOUN, BÉCHIR HAJJEM, TAHAR JOUINI AND BELGACEM BACCAR

Département de Chimie, Faculté des Sciences, Campus Universitaire, 1060 Tunis, Tunisia. E-mail: jouini@stardent. cck.tn

(Received 20 April 1995; accepted 5 October 1995)

Abstract

 $C_{16}H_{17}N_3S$ contains a planar thiazole ring. The C—S bond length is shorter than that found in the tetrahydro-thiophene [Allen, Kennard, Watson, Brammer, Orpen & Taylor (1987). *J. Chem. Soc. Perkin Trans.* 2, pp. S1–19]. The phenyl and the thiazole rings are conjugated.

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved

Fig. 1. ORTEP11 (Johnson, 1976) view of $C_{16}H_{17}N_3S$ showing the labelling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as small circles of arbitrary radii.

Experimental

The title compound was synthesized according to Kammoun, Hajjem & Baccar (1996) (see *Comment*).

Mo $K\alpha$ radiation

Cell parameters from 25

0.74 \times 0.48 \times 0.26 mm

 $\lambda = 0.71069 \text{ Å}$

reflections $\theta = 10-14^{\circ}$

 $\mu = 0.196 \text{ mm}^{-1}$

T = 293 (2) K

Parallelepiped

Colourless

 $R_{\rm int} = 0.0096$

 $\theta_{\rm max} = 24.96^{\circ}$

 $l = -34 \rightarrow 34$

2 standard reflections

frequency: 120 min

intensity decay: 0.11%

 $h = 0 \rightarrow 10$

 $k = 0 \rightarrow 6$

Crystal data

 $C_{16}H_{17}N_{3}S$ $M_{r} = 283.393$ Monoclinic $P2_{1}/n$ a = 9.199 (1) Å b = 5.731 (3) Å c = 28.812 (6) Å $\beta = 95.08 (1)^{\circ}$ $V = 1513.0 (9) Å^{3}$ Z = 4 $D_{x} = 1.244 \text{ Mg m}^{-3}$

Data collection CAD-4 diffractometer ω scans Absorption correction: none 2826 measured reflections 2649 independent reflections 2114 observed reflections $[I > 2\sigma(I)]$

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 0.174 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.0401$	$\Delta \rho_{\rm min} = -0.160 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.0955$	Extinction correction:
S = 1.179	SHELXL93 (Sheldrick,
2649 reflections	1993)
250 parameters	Extinction coefficient:
All H-atom parameters	0.015(1)
refined	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.0258P)^2]$	from International Tables
+ 0.6124 <i>P</i>]	for Crystallography (1992,
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} = -0.186$	6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\mathring{A}^2)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eq}
S	0.11796 (6)	-0.0161(1)	0.14102(2)	0.0549 (2)
CI	0.3725 (2)	0.1255 (4)	0.19470 (7)	0.0494 (5)
C2	0.3638 (3)	-0.0694 (5)	0.22202 (9)	0.0675 (7)
C3	0.4599 (3)	-0.1010 (6)	0.26111 (10)	0.0815(9)
C4	0.5649 (3)	0.0612 (6)	0.27318 (10)	0.0814 (9)
C5	0.5753 (3)	0.2556 (6)	0.24627 (10)	0.0824 (9)
C6	().4806(3)	0.2885 (5)	0.20714 (9)	0.0680(7)
C7	0.2701 (2)	0.1670(4)	0.15350(7)	0.0480(5)
C8	0.1601 (2)	0.3404 (4)	0.09181 (7)	0.0479 (5)
C9	0.0594 (2)	0.1624 (4)	0.09470(6)	0.0471 (5)
C10	0.1463 (2)	0.5155 (4)	0.05697 (7)	0.0523 (5)
C11	-0.1690(2)	-0.0592 (4)	0.07586(7)	0.0487(5)
C12	-0.2669 (3)	-0.0995 (6)	0.03159 (9)	0.0678(7)
C13	-0.3788 (4)	-0.2887 (6)	0.0386(1)	0.090(1)
C14	-0.4660 (3)	-0.2368 (8)	0.0790(1)	0.101 (1)
C15	-0.3668 (3)	-0.1958 (7)	0.1230(1)	0.0844 (9)
C16	-0.2587 (3)	-0.0005 (5)	0.1161(1)	0.0683(7)
N1	0.2771 (2)	0.3404 (3)	0.12529 (6)	0.0512(5)
N2	-0.0641 (2)	0.1235 (4)	0.06743 (6)	0.0563 (5)
N3	0.1297 (2)	0.6496 (4)	0.02770 (7)	0.0720(6)

S—C9	1.729(2)	C8—C9	1.386(3)
S—C7	1.761 (2)	C8-C10	1.417 (3)
C1C2	1.373 (3)	C9—N2	1.342 (3)
C1C6	1.388 (3)	C10—N3	1.141 (3)
CI—C7	1.468 (3)	C11—N2	1.459 (3)
C2—C3	1.380(4)	C11—C12	1.512 (3)
C3C4	1.363 (4)	C11-C16	1.518 (3)
C4—C5	1.366 (4)	C12—C13	1.521 (4)
С5—С6	1.376 (4)	C13-C14	1.501 (5)
C7—N1	1.289(3)	C14-C15	1.512 (5)
C8N1	1.380(2)	C15-C16	1.522 (4)
C9—S—C7	89.6(1)	N2-C9-C8	128.5 (2)
C2—C1—C6	118.5 (2)	N2—C9—S	122.9 (2)
C2C1C7	122.0(2)	C8—C9—S	108.5(1)
C6—C1—C7	119.6 (2)	N3-C10-C8	176.5 (2)
C1—C2—C3	120.6(3)	N2-C11-C12	108.8 (2)
C4C3C2	120.4 (3)	N2-C11-C16	112.4 (2)
C3—C4—C5	119.7 (3)	C12-C11-C16	110.7 (2)
C4C5C6	120.4 (3)	C11—C12—C13	110.8 (2)
C5—C6—C1	120.4 (3)	C14-C13-C12	112.1 (3)
NI-C7-CI	124.8 (2)	C13-C14-C15	110.8 (3)
NIC7S	114.4 (1)	C14-C15-C16	111.0(3)
C1—C7—S	120.7 (2)	C11-C16-C15	110.0(2)
N1-C8-C9	116.2 (2)	C7-N1-C8	111.2 (2)
NI-C8-C10	120.7 (2)	C9-N2-C11	124.1 (2)
C9—C8—C10	123.1 (2)		

Table 2. Geometric parameters (Å, °)

The ω -scan angle was $(0.78 + 1.50 \tan \theta)^{\circ}$ and the background was measured by the usual scan on each side of the reflection. The structure was solved by direct methods (*SHELXS86*; Sheldrick, 1985) and refinement was by full-matrix least-squares methods (*SHELXL93*; Sheldrick, 1993).

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86. Program(s) used to refine structure: SHELXL93. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, torsion angles and complete geometry have been deposited with the IUCr (Reference: DU1133). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Kammoun, M., Hajjem, B. & Baccar, B. (1996). J. Soc. Chim. Tunis. In the press.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. University of Göttingen, Germany.